samedi 18 juin 2016

Optimisation of Shadow Casting Python


I have been working on a Shadow Caster for a small RPG I'm doing.

The trouble I have is that when I use it in my game it is just way way way to slow and induces a horrible lag.

Please do not be too frighten by the lenght of the post. It is fairly straightforward but so that you can run the code I included all the Bresenham's algorithms as well.

The principle is as follow: - make a black surface - define a light source with a position and a radius. - get all the points on the circumference of the circle defined by this position and radius using Bresenham's Circle Algorithm. - for each point along the circumference draw a ligne from the position of the light source using Bresenham's Line Algorithm. - then iterate over the points of the line and check if they collide with every obstacle displayed on the screen. - If there is no collision draw a WHITE circle centered on that point with a radius of 10 pixels or so. - If there is a collision move on to the next point along the circle circumference. - finally blit the surface with all the white circles on a surface which has a transparency value of 100 for the black color and a full transparency for the WHITE color.

So far I have attempted the following: Which did reduce the lag: - restrict the obstacle list to the ones displayed on the screen - consider the screen edges as obstacles to reduce the iteration of area not visible. - iterate only over every 3 points around the circle and 12 points along the lines. Which didn't change anything: - using ellipses going from the light source to the edge of the range or the obstacle instead of lots of circles along the line. The problem was that I had to redraw surface for each ellipse and then rotate the whole lot.

If you have any suggestions on how to make this more efficient I would be happy to here then.

Bresenham's Line Algo:

def get_line(start, end):
    """Bresenham's Line Algorithm
    Produces a list of tuples from start and end

    >>> points1 = get_line((0, 0), (3, 4))
    >>> points2 = get_line((3, 4), (0, 0))
    >>> assert(set(points1) == set(points2))
    >>> print points1
    [(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)]
    >>> print points2
    [(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)]
    """
    # Setup initial conditions
    x1, y1 = start
    x2, y2 = end
    dx = x2 - x1
    dy = y2 - y1

    # Determine how steep the line is
    is_steep = abs(dy) > abs(dx)

    # Rotate line
    if is_steep:
        x1, y1 = y1, x1
        x2, y2 = y2, x2

    # Swap start and end points if necessary and store swap state
    swapped = False
    if x1 > x2:
        x1, x2 = x2, x1
        y1, y2 = y2, y1
        swapped = True

    # Recalculate differentials
    dx = x2 - x1
    dy = y2 - y1

    # Calculate error
    error = int(dx / 2.0)
    ystep = 1 if y1 < y2 else -1

    # Iterate over bounding box generating points between start and end
    y = y1
    points = []
    for x in range(x1, x2 + 1):
        coord = (y, x) if is_steep else (x, y)
        points.append(coord)
        error -= abs(dy)
        if error < 0:
            y += ystep
            error += dx

    # Reverse the list if the coordinates were swapped
    if swapped:
        points.reverse()
    return points

Bresenham's Circle Algo:

def get_circle((dx,dy),radius):
    "Bresenham complete circle algorithm in Python"
    # init vars
    switch = 3 - (2 * radius)
    points = set()
    x = 0
    y = radius
    # first quarter/octant starts clockwise at 12 o'clock
    while x <= y:
        # first quarter first octant
        points.add((x,-y))
        # first quarter 2nd octant
        points.add((y,-x))
        # second quarter 3rd octant
        points.add((y,x))
        # second quarter 4.octant
        points.add((x,y))
        # third quarter 5.octant
        points.add((-x,y))        
        # third quarter 6.octant
        points.add((-y,x))
        # fourth quarter 7.octant
        points.add((-y,-x))
        # fourth quarter 8.octant
        points.add((-x,-y))
        if switch < 0:
            switch = switch + (4 * x) + 6
        else:
            switch = switch + (4 * (x - y)) + 10
            y = y - 1
        x = x + 1
    offset_points = set()
    for pt in points:
        offset_points.add((pt[0]+dx,pt[1]+dy))

    return offset_points

def shadow_gen(shadow_surf,source,cir_pt,obstacles):
    line_points = get_line(source.pos,cir_pt)
    for line_pt in line_points[0::12]:
        for obs in obstacles:
            pygame.draw.circle(shadow_surf, WHITE, line_pt, 20, 0) #radius to 5px and 0 to fill the circle
            if obs.rect.collidepoint(line_pt) or pygame.Rect(0,0,500,500).collidepoint(line_pt) == False:
                return

My Classes for the light sources, obstacles and shadow mask:

class Obstacle(object):
    def __init__(self,x,y):
        self.surf = pygame.Surface((150,150))
        self.rect = pygame.Rect((x,y),(150,150))
        self.surf.fill(pygame.color.Color('blue'))

class Light_Source(object):
    def __init__(self,x,y,range_):
        self.range = range_
        self.pos = (x,y)


class Night_Mask(object):
    def __init__(self):
        self.surf = pygame.Surface((500,500)) #Screenwidth and height
        self.alpha = 100
        self.light_sources = []

        '''setting initial alpha and colorkey'''
        self.surf.set_colorkey(WHITE)
        self.surf.set_alpha(self.alpha)


    def apply_shadows(self, obstacles):
        shadow_surf = pygame.Surface((500,500))
        for source in self.light_sources:
            circle_pts = list(get_circle(source.pos,source.range))
            for cir_pt in circle_pts[0::3]:
                shadow_gen(shadow_surf,source,cir_pt,obstacles)
        self.surf.blit(shadow_surf, (0, 0))

The shadow generation functions which allows me to break out of both line and obstacle loop without using an exception in my apply_shadows method of the Night_Mask class:

def shadow_gen(shadow_surf,source,cir_pt,obstacles):
    line_points = get_line(source.pos,cir_pt)
    for line_pt in line_points[0::12]:
        for obs in obstacles:
            pygame.draw.circle(shadow_surf, WHITE, line_pt, 20, 0) #radius to 5px and 0 to fill the circle
            if obs.rect.collidepoint(line_pt) or pygame.Rect(0,0,500,500).collidepoint(line_pt) == False:
                return

And finally the main pygame example loop to run all of the above:

pygame.init()
screen = pygame.display.set_mode((500, 500))

bg = pygame.Surface((500,500))
bg.fill(pygame.color.Color('yellow'))

ob_a = Obstacle(75,80)
ls = Light_Source(75,75,300)
night_m = Night_Mask()
night_m.light_sources.extend([ls])

while True:  
    screen.fill(pygame.color.Color('black'))
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit()
            sys.exit()

    ls.pos = pygame.mouse.get_pos()

    night_m.apply_shadows([ob_a])

    screen.blit(bg, (0,  0))
    screen.blit(ob_a.surf,ob_a.rect)
    screen.blit(night_m.surf, (0, 0))

    pygame.display.flip()

Here is the entire code from start to finish for an easy copy paste:

import pygame
import sys

WHITE = (255,255,255)
'''FUNCTIONS'''
def get_line(start, end):
    """Bresenham's Line Algorithm
    Produces a list of tuples from start and end

    >>> points1 = get_line((0, 0), (3, 4))
    >>> points2 = get_line((3, 4), (0, 0))
    >>> assert(set(points1) == set(points2))
    >>> print points1
    [(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)]
    >>> print points2
    [(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)]
    """
    # Setup initial conditions
    x1, y1 = start
    x2, y2 = end
    dx = x2 - x1
    dy = y2 - y1

    # Determine how steep the line is
    is_steep = abs(dy) > abs(dx)

    # Rotate line
    if is_steep:
        x1, y1 = y1, x1
        x2, y2 = y2, x2

    # Swap start and end points if necessary and store swap state
    swapped = False
    if x1 > x2:
        x1, x2 = x2, x1
        y1, y2 = y2, y1
        swapped = True

    # Recalculate differentials
    dx = x2 - x1
    dy = y2 - y1

    # Calculate error
    error = int(dx / 2.0)
    ystep = 1 if y1 < y2 else -1

    # Iterate over bounding box generating points between start and end
    y = y1
    points = []
    for x in range(x1, x2 + 1):
        coord = (y, x) if is_steep else (x, y)
        points.append(coord)
        error -= abs(dy)
        if error < 0:
            y += ystep
            error += dx

    # Reverse the list if the coordinates were swapped
    if swapped:
        points.reverse()
    return points

def get_circle((dx,dy),radius):
    "Bresenham complete circle algorithm in Python"
    # init vars
    switch = 3 - (2 * radius)
    points = set()
    x = 0
    y = radius
    # first quarter/octant starts clockwise at 12 o'clock
    while x <= y:
        # first quarter first octant
        points.add((x,-y))
        # first quarter 2nd octant
        points.add((y,-x))
        # second quarter 3rd octant
        points.add((y,x))
        # second quarter 4.octant
        points.add((x,y))
        # third quarter 5.octant
        points.add((-x,y))        
        # third quarter 6.octant
        points.add((-y,x))
        # fourth quarter 7.octant
        points.add((-y,-x))
        # fourth quarter 8.octant
        points.add((-x,-y))
        if switch < 0:
            switch = switch + (4 * x) + 6
        else:
            switch = switch + (4 * (x - y)) + 10
            y = y - 1
        x = x + 1
    offset_points = set()
    for pt in points:
        offset_points.add((pt[0]+dx,pt[1]+dy))

    return offset_points

def shadow_gen(shadow_surf,source,cir_pt,obstacles):
    line_points = get_line(source.pos,cir_pt)
    for line_pt in line_points[0::12]:
        for obs in obstacles:
            pygame.draw.circle(shadow_surf, WHITE, line_pt, 20, 0) #radius to 5px and 0 to fill the circle
            if obs.rect.collidepoint(line_pt) or pygame.Rect(0,0,500,500).collidepoint(line_pt) == False:
                return

'''CLASSES'''                
class Obstacle(object):
    def __init__(self,x,y):
        self.surf = pygame.Surface((150,150))
        self.rect = pygame.Rect((x,y),(150,150))
        self.surf.fill(pygame.color.Color('blue'))

class Light_Source(object):
    def __init__(self,x,y,range_):
        self.range = range_
        self.pos = (x,y)


class Night_Mask(object):
    def __init__(self):
        self.surf = pygame.Surface((500,500)) #Screenwidth and height
        self.alpha = 100
        self.light_sources = []


        '''setting initial alpha and colorkey'''
        self.surf.set_colorkey(WHITE)
        self.surf.set_alpha(self.alpha)


    def apply_shadows(self, obstacles):
        shadow_surf = pygame.Surface((500,500))
        for source in self.light_sources:
            circle_pts = list(get_circle(source.pos,source.range))
            for cir_pt in circle_pts[0::3]:
                shadow_gen(shadow_surf,source,cir_pt,obstacles)
        self.surf.blit(shadow_surf, (0, 0))


'''MAIN GAME'''
pygame.init()
screen = pygame.display.set_mode((500, 500))

bg = pygame.Surface((500,500))
bg.fill(pygame.color.Color('yellow'))

ob_a = Obstacle(75,80)
ls = Light_Source(75,75,300)
night_m = Night_Mask()
night_m.light_sources.extend([ls])

while True:  
    screen.fill(pygame.color.Color('black'))
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit()
            sys.exit()

    ls.pos = pygame.mouse.get_pos()

    night_m.apply_shadows([ob_a])

    screen.blit(bg, (0,  0))
    screen.blit(ob_a.surf,ob_a.rect)
    screen.blit(night_m.surf, (0, 0))

    pygame.display.flip()

Aucun commentaire:

Enregistrer un commentaire