I'm looking at creating a Dataframe that is the combination of two unrelated series.
If we take two dataframes:
A = ['a','b','c']
B = [1,2,3,4]
dfA = pd.DataFrame(A)
dfB = pd.DataFrame(B)
I'm looking for this output:
A B
0 a 1
1 a 2
2 a 3
3 a 4
4 b 1
5 b 2
6 b 3
7 b 4
8 c 1
9 c 2
10 c 3
11 c 4
One way could be to have loops on the lists direclty and create the DataFrame but there must be a better way. I'm sure I'm missing something from the pandas documentation.
result = []
for i in A:
for j in B:
result.append([i,j])
result_DF = pd.DataFrame(result,columns=['A','B'])
Ultimately I'm looking at combining months and UUID, I have something working but it takes ages to compute and relies too much on the index. A generic solution would clearly be better:
from datetime import datetime
start = datetime(year=2016,month=1,day=1)
end = datetime(year=2016,month=4,day=1)
months = pd.DatetimeIndex(start=start,end=end,freq="MS")
benefit = pd.DataFrame(index=months)
A = [UUID('d48259a6-80b5-43ca-906c-8405ab40f9a8'),
UUID('873a65d7-582c-470e-88b6-0d02df078c04'),
UUID('624c32a6-9998-49f4-92b6-70e712355073'),
UUID('7207ab0c-3c7f-477e-b5bc-fbb8059c1dec')]
dfA = pd.DataFrame(A)
result = pd.DataFrame(columns=['A','month'])
for i in dfA.index:
newdf = pd.DataFrame(index=benefit.index)
newdf['A'] = dfA.iloc[i,0]
newdf['month'] = newdf.index
result = pd.concat([result,newdf])
result
Aucun commentaire:
Enregistrer un commentaire